When Is Hyponormality for 2-variable Weighted Shifts Invariant under Powers?

نویسنده

  • RAÚL E. CURTO
چکیده

Abstract. For 2-variable weighted shifts W(α,β) ≡ (T1, T2) we study the invariance of (joint) khyponormality under the action (h, `) 7→ W (h,`) (α,β) := (T h 1 , T ` 2 ) (h, ` ≥ 1). We show that for every k ≥ 1 there exists W(α,β) such that W (h,`) (α,β) is k-hyponormal (all h ≥ 2, ` ≥ 1) but W(α,β) is not k-hyponormal. On the positive side, for a class of 2-variable weighted shifts with tensor core we find a computable necessary condition for invariance. Next, we exhibit a large nontrivial class for which hyponormality is indeed invariant under all powers; moreover, for this class 2-hyponormality automatically implies subnormality. Finally, we show that there exists a 2-hyponormal W(α,β) such that W (2,1) (α,β) is not 2-hyponormal. Our results partially depend on new formulas for the determinant of generalized Hilbert matrices and on criteria for their positive semi-definiteness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aluthge transforms of 2-variable weighted shifts

We introduce two natural notions of multivariable Aluthge transforms (toral and spherical), and study their basic properties. In the case of 2-variable weighted shifts, we first prove that the toral Aluthge transform does not preserve (joint) hyponormality, in sharp contrast with the 1-variable case. Second, we identify a large class of 2-variable weighted shifts for which hyponormality is pres...

متن کامل

Propagation Phenomena for Hyponormal 2-variable Weighted Shifts

We study the class of hyponormal 2-variable weighted shifts with two consecutive equal weights in the weight sequence of one of the coordinate operators. We show that under natural assumptions on the coordinate operators, the presence of consecutive equal weights leads to horizontal or vertical flatness, in a way that resembles the situation for 1-variable weighted shifts. In 1variable, it is w...

متن کامل

k-HYPONORMALITY OF POWERS OF WEIGHTED SHIFTS VIA SCHUR PRODUCTS

Let H be a separable, infinite dimensional complex Hilbert space and let B(H) be the algebra of bounded linear operators on H. An operator T∈ B(H) is said to be normal if T ∗T = TT ∗, subnormal if T is the restriction of a normal operator (acting on a Hilbert space K ⊇ H) to an invariant subspace, and hyponormal if T ∗T ≥ TT ∗. The Bram-Halmos criterion for subnormality states that an operator ...

متن کامل

The Lifting Problem for Hyponormal Pairs of Commuting Subnormal Operators

We construct three different families of commuting pairs of subnormal operators, jointly hyponormal but not admitting commuting normal extensions. Each such family can be used to answer in the negative a 1988 conjecture of RC, P. Muhly and J. Xia. We also obtain a sufficient condition under which joint hyponormality does imply joint subnormality. Our tools include the use of 2-variable weighted...

متن کامل

Hyponormality and Subnormality for Powers of Commuting Pairs of Subnormal Operators

Let H0 (resp. H∞) denote the class of commuting pairs of subnormal operators on Hilbert space (resp. subnormal pairs), and for an integer k ≥ 1 let Hk denote the class of k-hyponormal pairs in H0. We study the hyponormality and subnormality of powers of pairs in Hk. We first show that if (T1, T2) ∈ H1, the pair (T 2 1 , T2) may fail to be in H1. Conversely, we find a pair (T1, T2) ∈ H0 such tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010